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Why Synthetic Training
§ Collections of real data are costly

§ Massive real image

§ Classification / Segmentation / Detection

§ Synthetic data are relatively cheap to generate
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Cityscapes (3K annotations) GTA5 (24,966 annotations)
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Why Synthetic Training
§ In some cases, synthetic data is all you have...

§ EyeGaze / Depth / Flow /3D Mesh reconstruction / Robotics

3

Wood et al. ICCV 2015 Habitat (Facebook)
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Synthetic Simulation Empowers Some Most
Important Applications

§ Autonomous Driving: Omniverse, ISAAC, DRIVE Sim, etc.
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ISAAC platform DRIVE Sim
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Synthetic Simulation Empowers Some Most
Important Applications

§ Medical Image Analysis: cover more corner cases, resolve privacy concerns…
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Challenging Domain Gap: Synthetic vs Real
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Domain Randomization (IROS’17)
§ To handle the variability in real-world data, the simulator parameters

(lighting, pose, object textures, etc) are randomized in non-realistic ways to 
force the learning of essential diverse features.
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Can We Do Better than Random?
§ Learn to simulate better data for a particular downstream task?

§ Learn to simulate edge cases?

9

Random Simulation Desired Simulation
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Learning to Simulate (ICLR’19)
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Learning to Simulate (ICLR’19)
§ Train the policy of selecting simulator parameters, using policy gradient,

since the simulator is often non-differentiable

11



12

Are better simulators enough?
Models overfit to any difference High quality is expensive

Virtual KITTI Dataset 
Multi-object tracking accuracy: 
Sim: 63.7%
Real: 78.1%
Virtual Worlds as Proxy for Multi-Object Tracking Analysis
[Gaidon*, Wang*, Cabon, Vig, 2016]

Jungle Book:
30M render hours 
19 hours per frame
800 artist-years of effort
Jungle Book, 2016

Josh Tobin Slides Credits: Josh Tobin
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Slides Credits: Josh Tobin
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Slides Credits: Josh Tobin
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Automated Synthetic-to-Real 
Generalization

ICML 2020

Wuyang Chen, Zhiding Yu, Zhangyang “Atlas” Wang, Anima Anandkumar
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Previous solutions: Heuristic Hand-tuning
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ImageNet as Proxy Guidance
§ Why early stopping?

è Keep weights close to ImageNet initialization.

§ We minimize ℒ!": new model vs ImageNet initialization

è ImageNet as proxy guidance in syn2real training.
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ImageNet as Proxy Guidance
§ Why early stopping?

è Keep weights close to ImageNet initialization.

§ We minimize ℒ!": new model vs ImageNet initialization

è ImageNet as proxy guidance in syn2real training.
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L2O: automatic control of layer-wise learning rate

§ Why small learning rate?

è Keep weights close to ImageNet initialization.

§ But how small for which layer?

è L2O (learning-to-optimize): automatic control of layer-wise learning rate
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Automated Synthetic-to-Real Generalization (ASG)

§ Why small learning rate?

è Keep weights close to ImageNet initialization

§ But how small for which layer?

è L2O (learning-to-optimize): automatic control of layer-wise learning rate
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§ Backbone (ImageNet pretrained): closer to ℒ!" à smaller LR

§ Projection head: large LR

Action Behavior of RL-L2O Policy
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Segmentation: GTA5 è CityscapesVgg16-FCN8s

Conv1
Conv2
Conv3
Conv4
Conv5

Conv6&7

Projection
Upsampling

output

!"#

pretrained

1 11 21 31 41

Epoch (Policy Training)

0

2

4

6

8

10

A
ct

io
n

(L
R

sc
al

e
fa

ct
or

)

conv1

conv2

conv4

conv3

conv5

conv6&7

projection upsampling

conv5

conv3,4

conv2
conv1
conv6&7

projection head

FCN-Vgg16



22

Why ASG Works? Retaining ImageNet Information
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ASG Benefits Domain Adaptation & Self-Training
§ ASG serves as better initialization

1. ImageNet è Self-training for DA

2. ImageNet è ASG è Self-training for DA
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Contrastive Syn-to-Real Generalization

ICLR 2021

Wuyang Chen, Zhiding Yu, Shalini De Mello, Sifei Liu, Jose M. Alvarez,

Zhangyang “Atlas” Wang, Anima Anandkumar
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Deeper Look Into Domain Gap
§ Synthetic images leads to collapsed feature space!

Liu et al. Neurips 2018

Hyperspherical Energy (HSE, 𝐸!)
Low 𝐸! è diverse features
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ImageNet Distillation + Feature Diversity
§ Synthetic-to-real with a “push and pull” strategy
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Contrastive Loss
§ InfoNCE

§ Multi-layer InfoNCE

§ Dense InfoNCE (segmentation)
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Attention-guided Global Pooling
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Results: Feature Diversity vs Generalization
§ Model preserves diverse features è generalize better on real domain
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Results: Segmentation
§ GTA5èCityscapes
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Future Works

§ More applications: Gaze, Detection, Robotics, etc.

§ Joint training with domain adaptation.

§ Better leveraging multiple sources

§ labeled real domain (ImageNet)

§ labeled synthetic domain

§ Unlabeled target real domain
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