

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Spring 2021

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

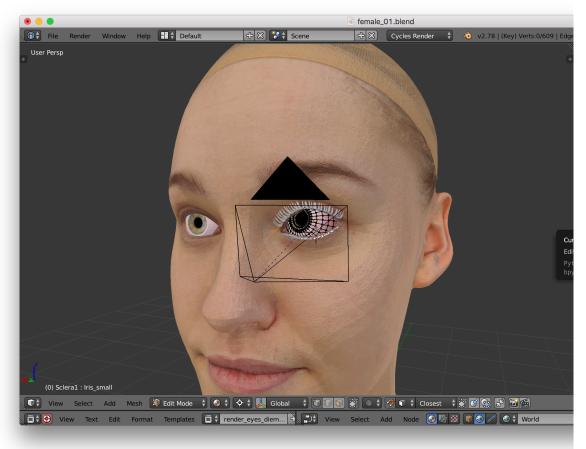
Why Synthetic Training

- Collections of real data are costly
 - Massive real image
 - Classification / Segmentation / Detection
- Synthetic data are relatively cheap to generate

GTA5 (24,966 annotations)

Why Synthetic Training

- In some cases, synthetic data is all you have...
- EyeGaze / Depth / Flow / 3D Mesh reconstruction / Robotics

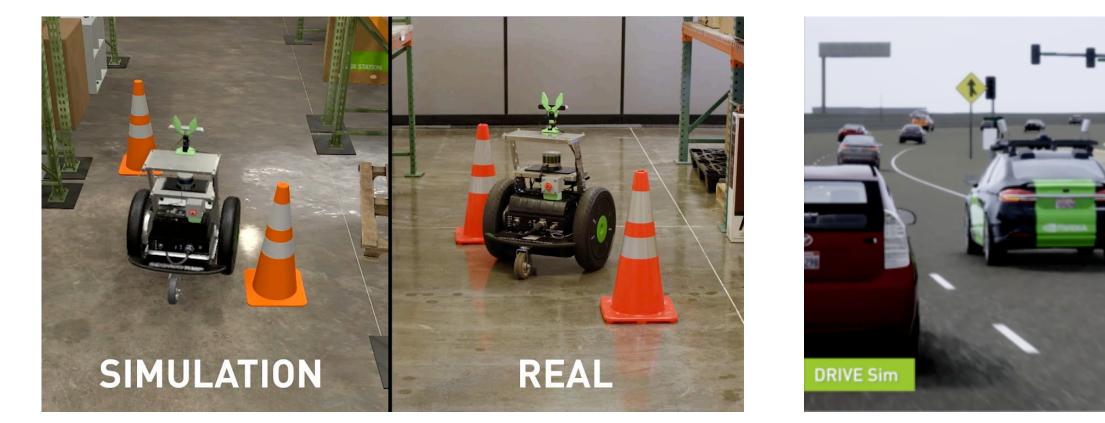


Wood et al. ICCV 2015

Habitat (Facebook)

Synthetic Simulation Empowers Some Most **Important Applications**

Autonomous Driving: Omniverse, ISAAC, DRIVE Sim, etc.

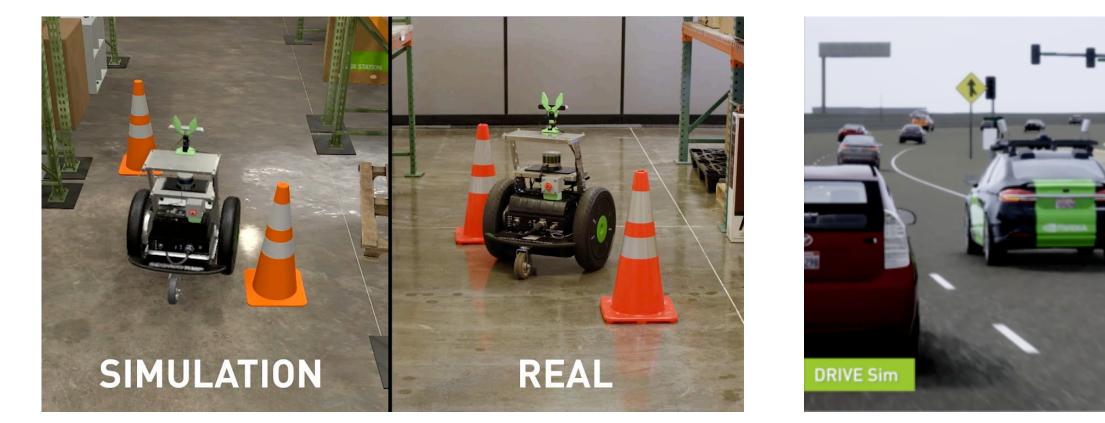


ISAAC platform

DRIVE Sim

Synthetic Simulation Empowers Some Most **Important Applications**

Autonomous Driving: Omniverse, ISAAC, DRIVE Sim, etc.

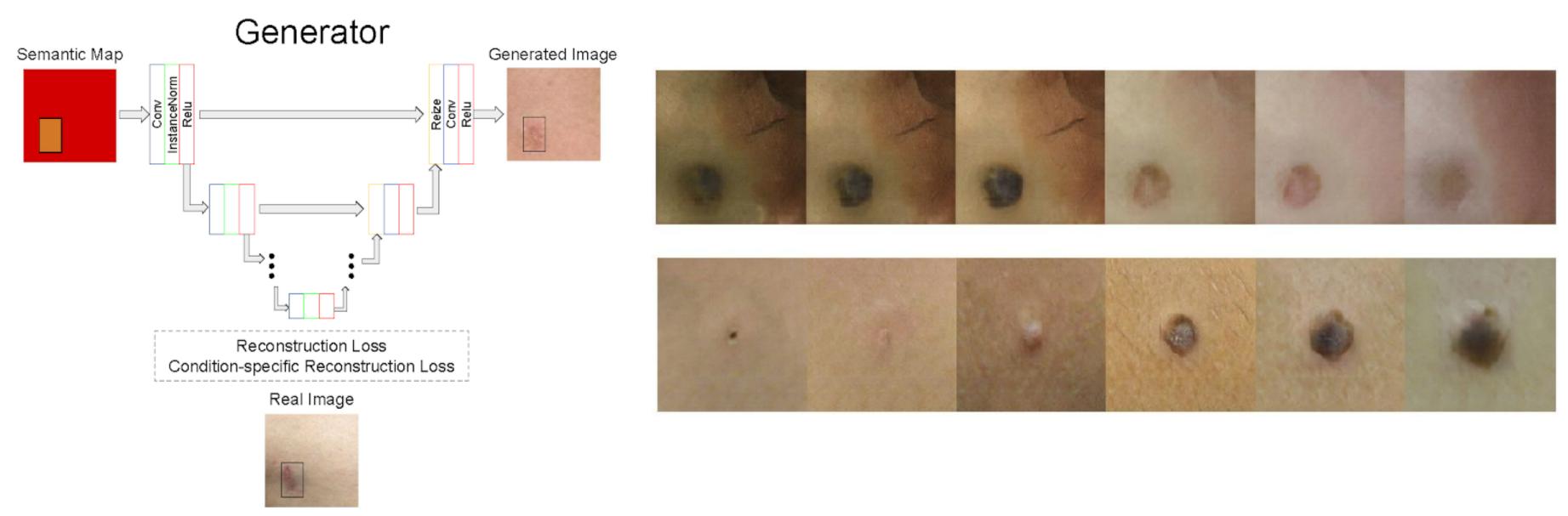


ISAAC platform

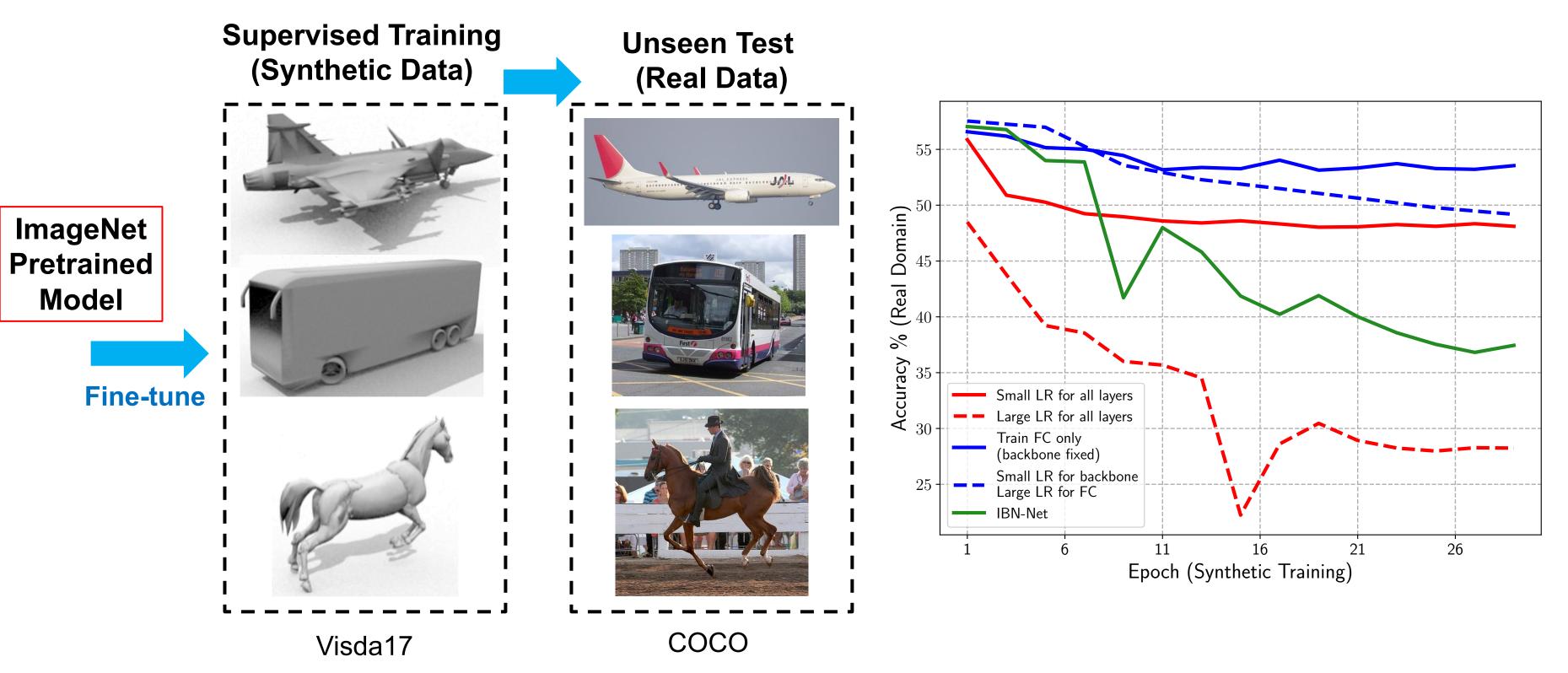
DRIVE Sim

Synthetic Simulation Empowers Some Most **Important Applications**

Medical Image Analysis: cover more corner cases, resolve privacy concerns...



Challenging Domain Gap: Synthetic vs Real

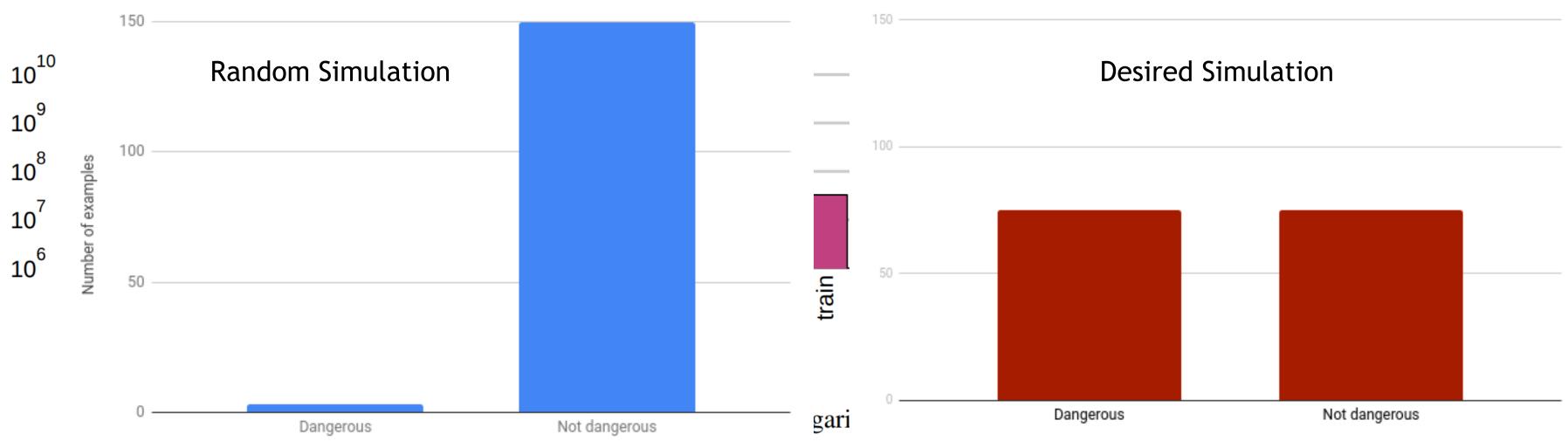


Domain Randomization (IROS'17)

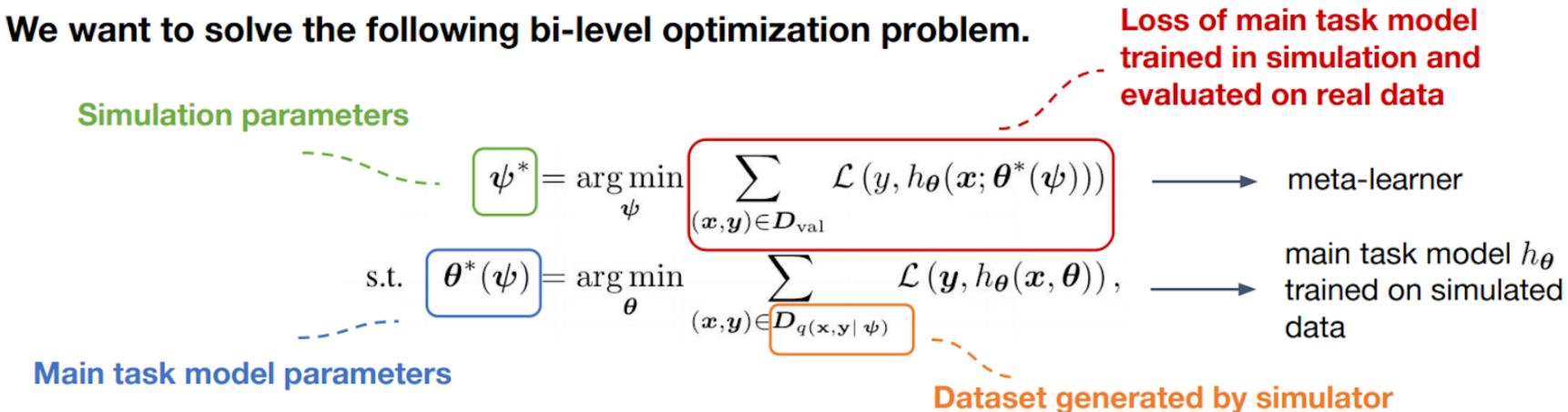
• To handle the variability in real-world data, the simulator parameters (lighting, pose, object textures, etc) are randomized in non-realistic ways to force the learning of essential diverse features.

Can We Do Better than Random?

- Learn to simulate better data for a particular downstream task?
- Learn to simulate edge cases?

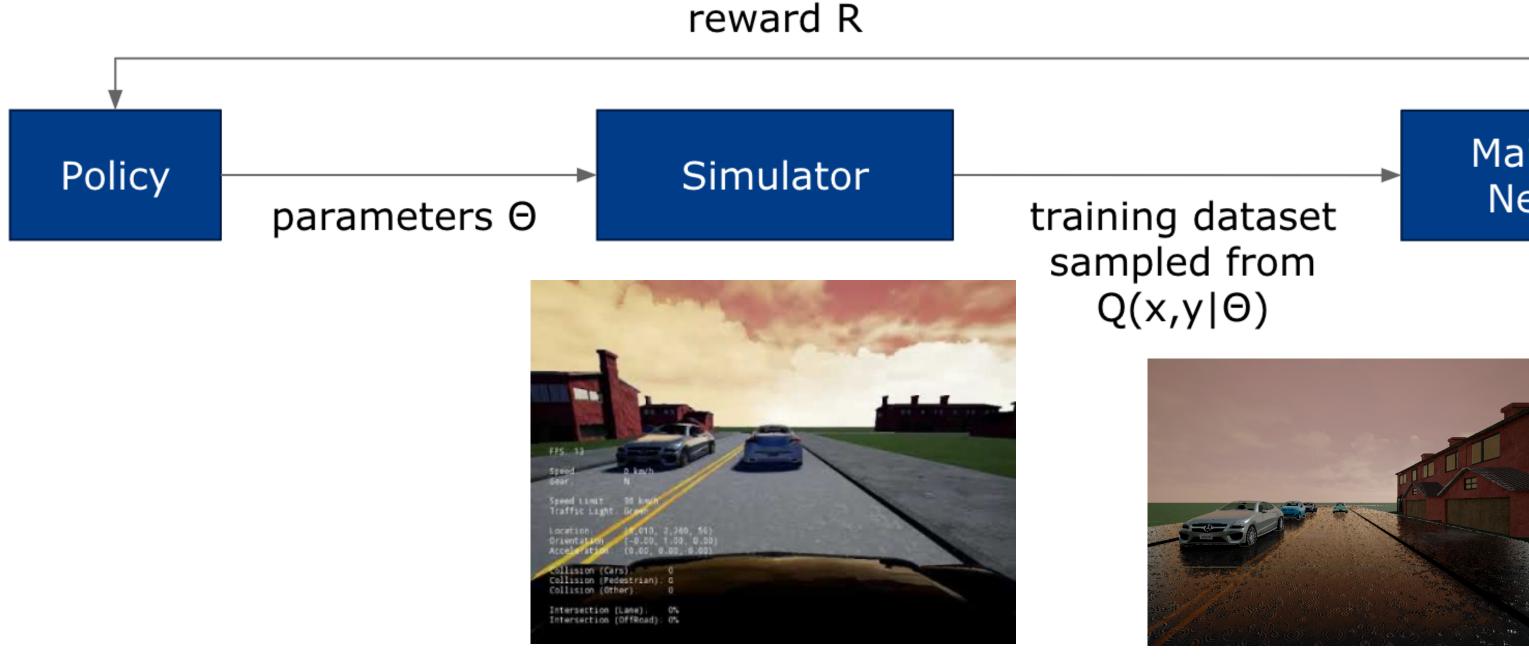


Learning to Simulate (ICLR'19)



Learning to Simulate (ICLR'19)

 Train the policy of selecting simulator parameters, using policy gradient, since the simulator is often non-differentiable



Main Task Network

Are better simulators enough? High quality is expensive

Models overfit to any difference

Virtual KITTI Dataset **Multi-object tracking accuracy:** Sim: 63.7% **Real: 78.1%**

Virtual Worlds as Proxy for Multi-Object Tracking Analysis [Gaidon*, Wang*, Cabon, Vig, 2016]

Jungle Book: 30M render hours 19 hours per frame 800 artist-years of effort Jungle Book, 2016

Slides Credits: Josh Tobin

Supervised domain adaptation Iterative learning control **Fine-tuning**

Low-Fidelity and/or Cost Σ_1

Using inaccurate models in reinforcement learning [Abbeel, Quigley, Ng, 2006]

Reinforcement learning with multi-fidelity simulators [Cutler, Walsh, How 2014]

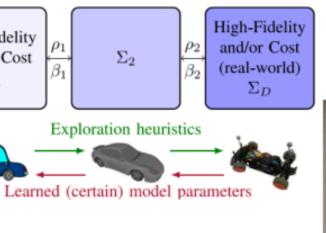
Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations [Van Den Berg, Miller, Duckworth, Hu, Wan, Fu, Goldberg, Abbeel, 2010]

Learning Omnidirectional Path Following Using Dimensionality Reduction [Kolter, Ng, 2003]

Efficient Reinforcement Learning for Robotics using Informative Simulated Priors [Cutler, How, 2015]

Sim-to-Real Robot Learning from Pixels with Progressive Nets [Rusu et al. 2016]

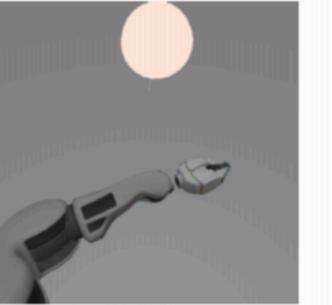
Deep Predictive Policy Training using Reinforcement Learning [Ghadirzadeh, Maki, Kragic, Bjorkman, 2017]

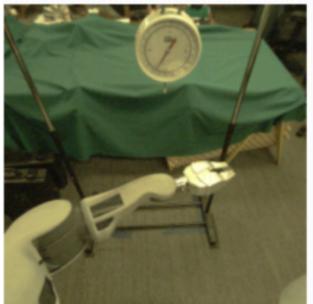


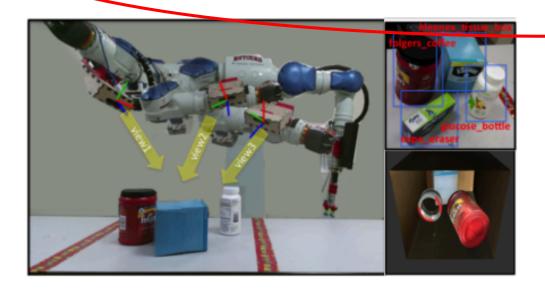
Slides Credits: Josh Tobin

(Less) supervised domain adaptation

Weakly Supervised



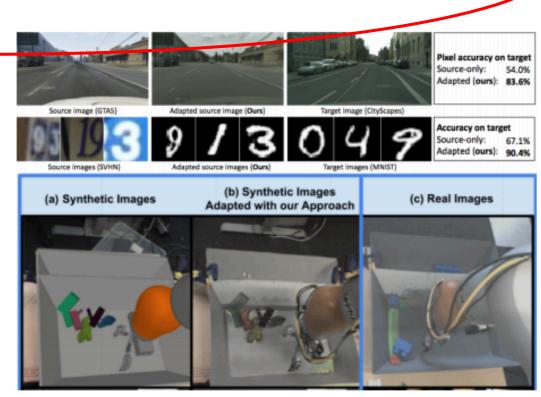




Adapting Deep Visuomotor Representations with Weak Pairwise Constraints [Tzeng, Devin, Hoffman, Finn, Abbeel, Levine, Saenko, Darrell, 2016]

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation [Mitash, Bekris, Boularias, 2017]

sed Unsupervised



CyCADA [Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrel, 2017] Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping [Bousmalis et al., 2017]

Slides Credits: Josh Tobin

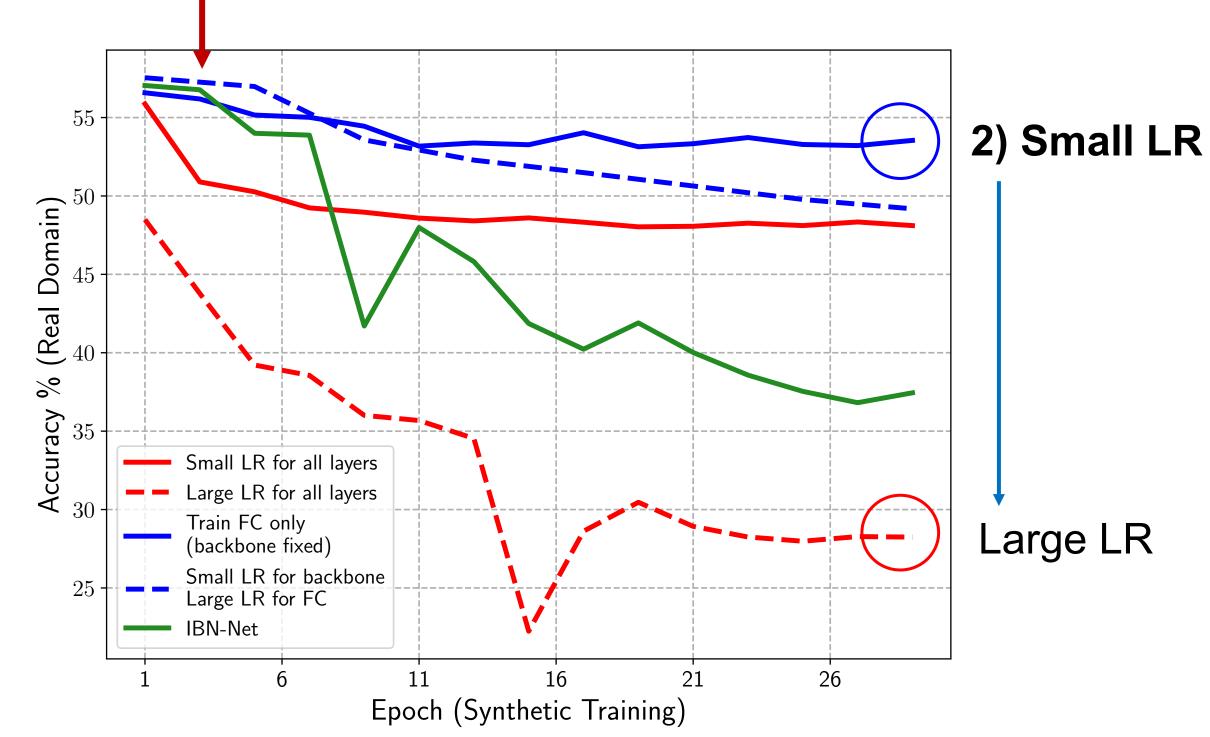
Automated Synthetic-to-Real Generalization

ICML 2020

Wuyang Chen, Zhiding Yu, Zhangyang "Atlas" Wang, Anima Anandkumar

Previous solutions: Heuristic Hand-tuning

1) Early stopping



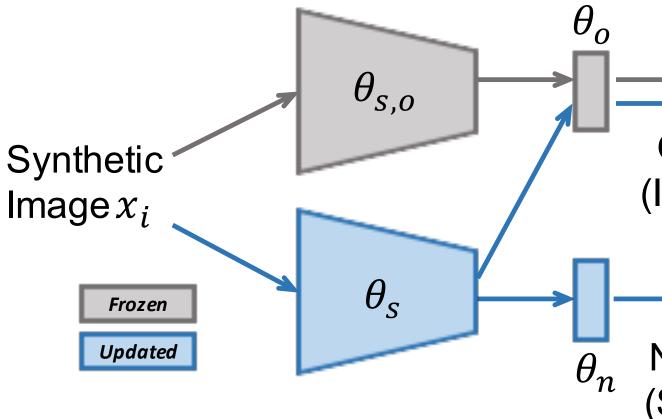
ImageNet as Proxy Guidance

Why early stopping?

 \rightarrow Keep weights close to ImageNet initialization.

• We minimize \mathcal{L}_{KL} : new model vs ImageNet initialization

 \rightarrow ImageNet as proxy guidance in syn2real training.



Old Task (ImageNet)

 \mathcal{L}_{XE} New Task (Synthetic)

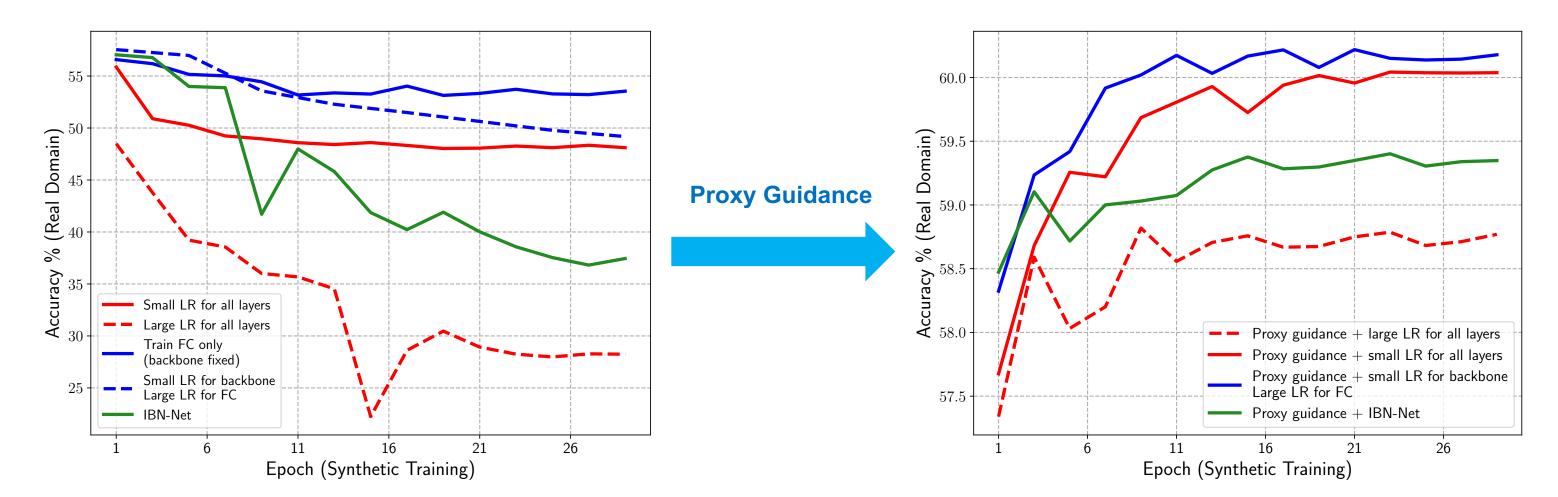
ImageNet as Proxy Guidance

Why early stopping?

 \rightarrow Keep weights close to ImageNet initialization.

• We minimize \mathcal{L}_{KL} : new model vs ImageNet initialization

→ ImageNet as proxy guidance in syn2real training.



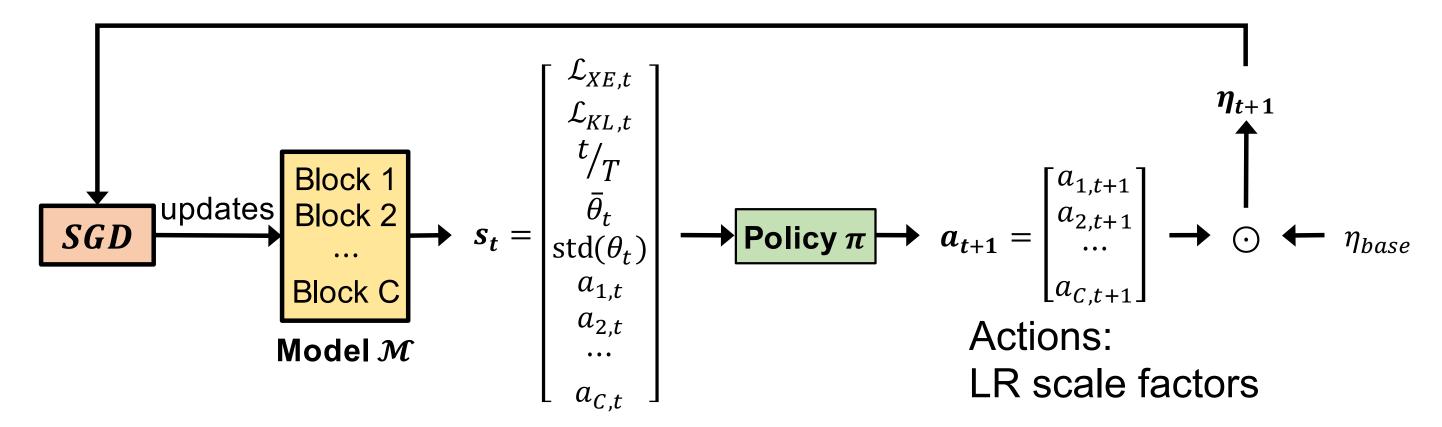
L2O: automatic control of layer-wise learning rate

Why small learning rate?

 \rightarrow Keep weights close to ImageNet initialization.

But how small for which layer?

→ L20 (learning-to-optimize): automatic control of layer-wise learning rate



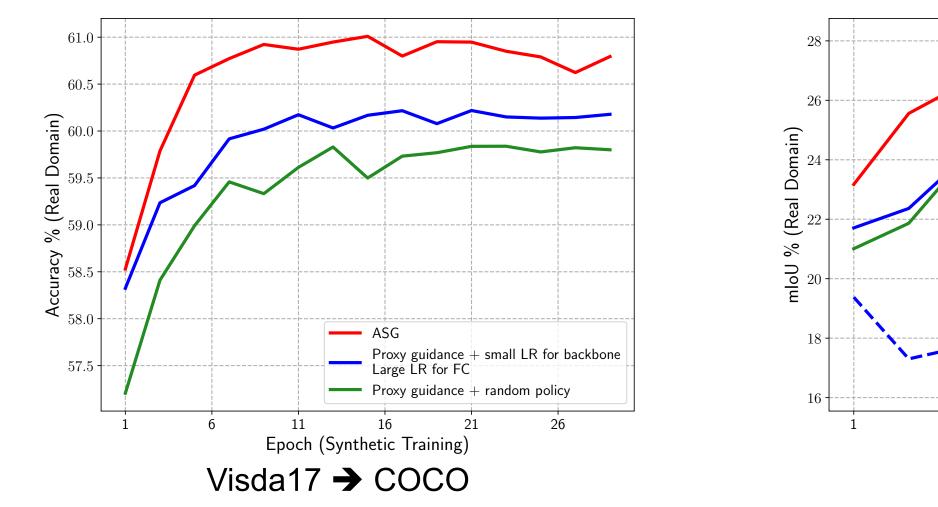
Automated Synthetic-to-Real Generalization (ASG)

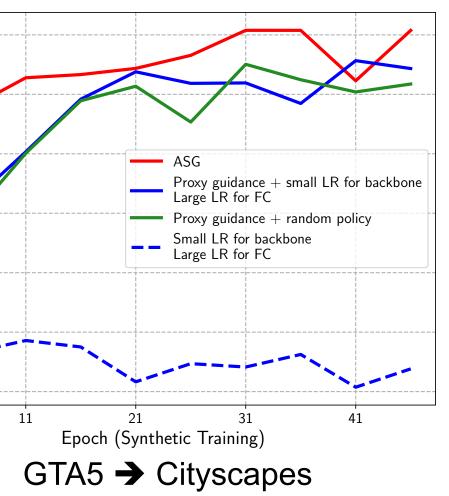
Why small learning rate?

 \rightarrow Keep weights close to ImageNet initialization

But how small for which layer?

→ L2O (learning-to-optimize): automatic control of layer-wise learning rate

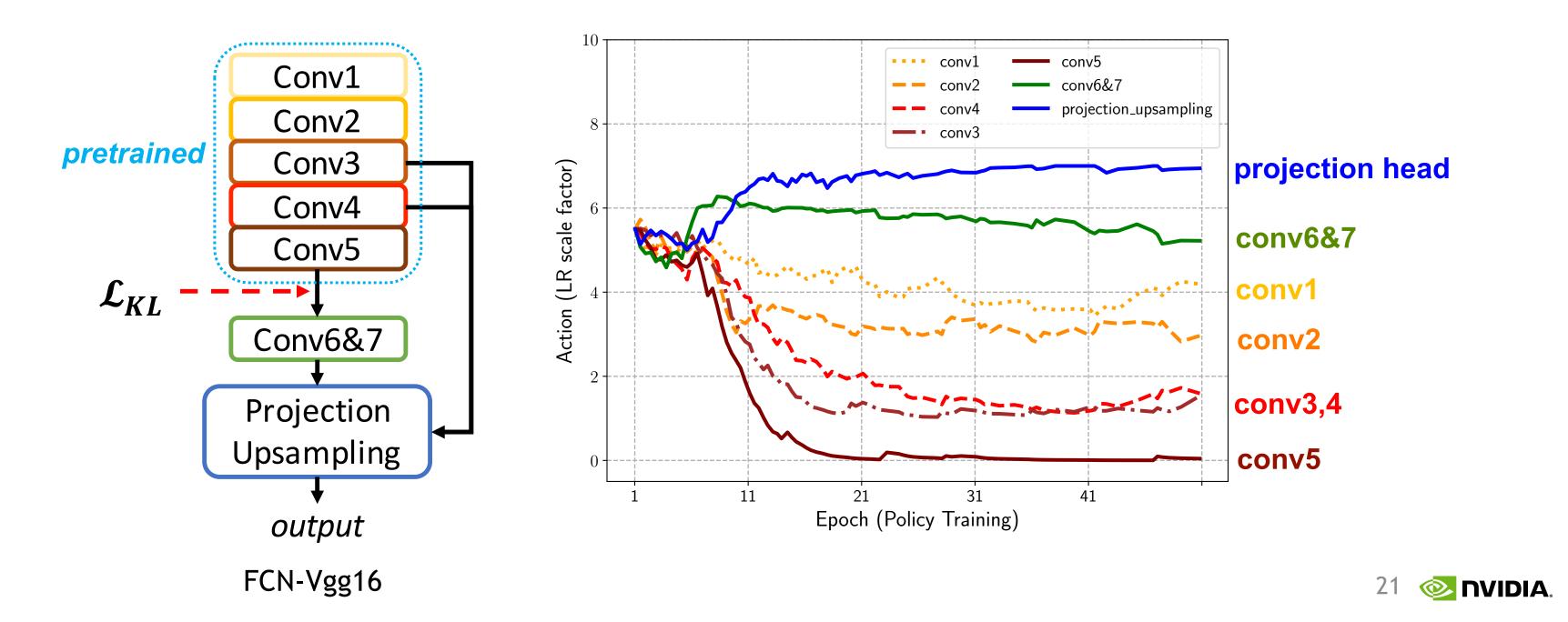




NVIDIA

Action Behavior of RL-L2O Policy

- Backbone (ImageNet pretrained): closer to $\mathcal{L}_{KL} \rightarrow$ smaller LR
- Projection head: large LR



Why ASG Works? Retaining ImageNet Information

#	Model	Visda-17	ImageNet
1. 2.	Large LR for all layers + our Proxy Guidance	28.2 58.7 (+30.5)	0.8 76.2 (+75.4)
3.	Small LR for backbone and large LR for FC	49.3	33.1
4.	+ our Proxy Guidance	60.2 (+10.9)	76.5 (+43.4)
5.	Oracle on ImageNet ²	53.3 (+4.0)	77.4
6.	ROAD (Chen et al., 2018)	57.1 (+7.8)	77.4
7.	Vanilla L2 distance	56.4 (+7.1)	49.1
8.	SI (Zenke et al., 2017)	57.6 (+8.3)	53.9
9.	ASG (ours)	61.5	76.7

ASG Benefits Domain Adaptation & Self-Training

ASG serves as better initialization

1. ImageNet → Self-training for DA

2. ImageNet \rightarrow ASG \rightarrow Self-training for DA

DISTRIBU
PERVISED

Haoxuan Wang *Anqi Liu *Shanghai Jiao Tong UniversityCaltechhatch25@sjtu.edu.cnanqiliu@caltech.edu

Yisong Yue Caltech yyue@caltech.edu

Method	Tgt Img	Accuracy
Source-Res101 (Zou et al., 2019) CBST (Zou et al., 2018)	X	51.6 76.4 (0.9)
MRKLD (Zou et al., 2018) $MRKLD + LRENT (Zou et al., 2019)$		77.9 (0.5) 78.1 (0.2)
ASG (ours) ASG + CBST	X	61.5 82.5 (0.7)
ASG + MRKLD ASG + MRKLD + LRENT		84.6 (0.4) 84.5 (0.4)

TIONALLY ROBUST LEARNING FOR UNSU-DOMAIN ADAPTATION

Zhiding Yu NVIDIA zhidingy@nvidia.com

Anima Anandkumar

Caltech & NVIDIA

anima@caltech.edu aanandkumar@nvidia.com

Method	Mean
Source (Saito et al., 2018a)	52.4
MMD (Long et al. 2015)	61.1
MCD (Saito et al. 2018b)	71.9
ADR (Saito et al., 2018a)	74.8
CBST (Zou et al., 2020)	76.4
CRST (Zou et al., 2020)	78.1
AVH (Chen et al., 2020a)	81.5
DRST (proposed)	83.75
ASG (Chen et al., 2020b)	61.17
CBST-ASG (Chen et al., 2020b)	82.23
CRST-ASG (Chen et al., 2020b)	84.21
DRST-ASG (proposed)	85.25

Contrastive Syn-to-Real Generalization

ICLR 2021

Wuyang Chen, Zhiding Yu, Shalini De Mello, Sifei Liu, Jose M. Alvarez, Zhangyang "Atlas" Wang, Anima Anandkumar

Deeper Look Into Domain Gap

Synthetic images leads to collapsed feature space!

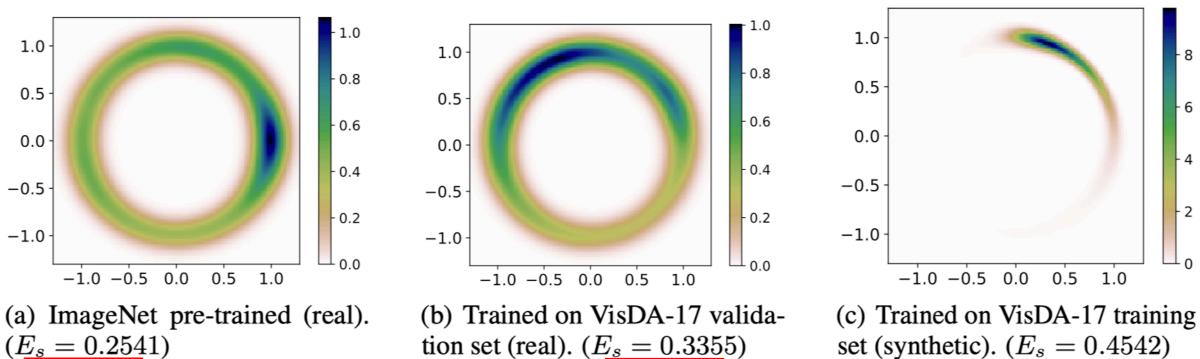
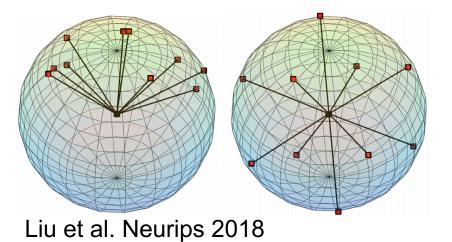


Figure 2: Feature diversity in \mathbb{R}^2 with Gaussian kernel density estimation (KDE). Darker areas have more concentrated features. E_s : hyperspherical energy of features, lower the more diverse.

Hyperspherical Energy (HSE, E_s) Low $E_s \rightarrow$ diverse features

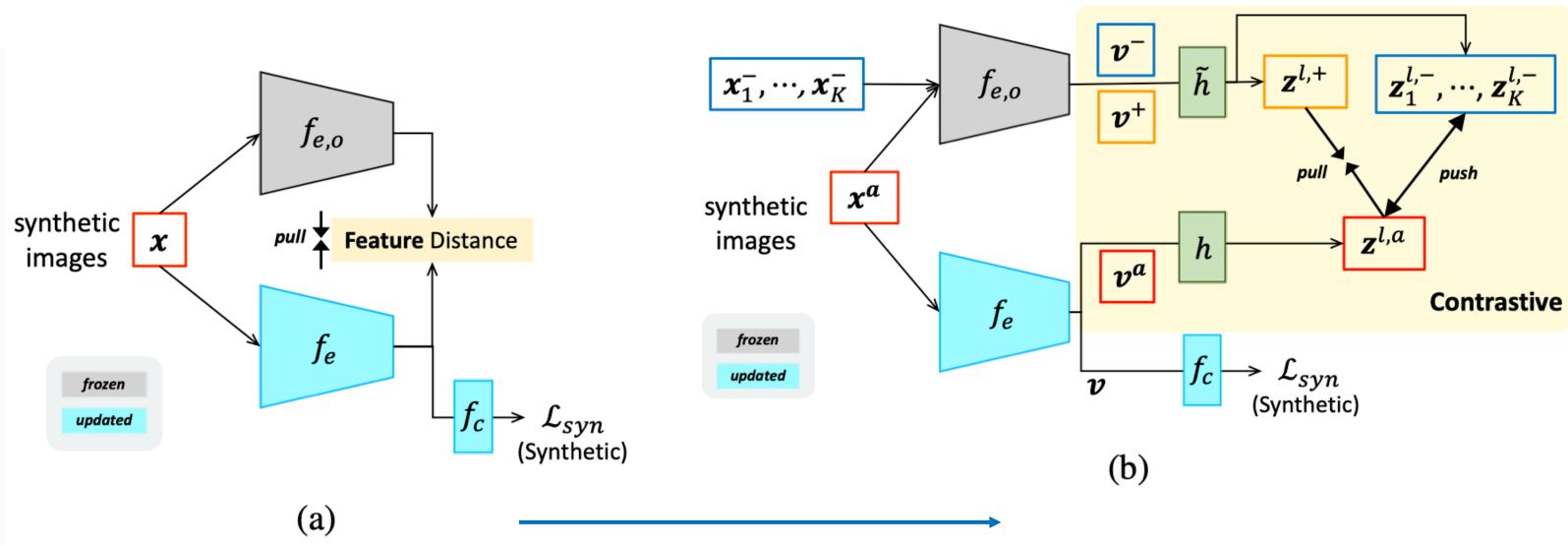
$$E_{s}\left(\bar{\boldsymbol{v}}_{i}\big|_{i=1}^{N}\right) = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} e_{s}\left(\|\bar{\boldsymbol{v}}_{i} - \bar{\boldsymbol{v}}_{j}\|\right) = \begin{cases} \sum_{i \neq j} \|\bar{\boldsymbol{v}}_{i} - \bar{\boldsymbol{v}}_{j}\|^{-s}, & s > 0\\ \sum_{i \neq j} \log\left(\|\bar{\boldsymbol{v}}_{i} - \bar{\boldsymbol{v}}_{j}\|^{-1}\right), & s = 0 \end{cases}$$



NVIDIA

ImageNet Distillation + Feature Diversity

Synthetic-to-real with a "push and pull" strategy



Contrastive Loss

 $\mathcal{L}_{ ext{NCE}} = -\log rac{\exp\left(oldsymbol{z}^a \cdot oldsymbol{z}^+ / au
ight)}{\exp\left(oldsymbol{z}^a \cdot oldsymbol{z}^+ / au
ight) + \sum_{oldsymbol{z}^-} \exp\left(oldsymbol{z}^a \cdot oldsymbol{z}^- / au
ight)},$ InfoNCE

$$\mathcal{L} = \mathcal{L}_{\mathrm{syn}} + \lambda \mathcal{L}_{\mathrm{NCE}}$$

Multi-layer InfoNCE

$$\mathcal{L}_{\text{NCE}} = \sum_{l \in \mathcal{G}} \mathcal{L}_{\text{NCE}}^{l} = \sum_{l \in \mathcal{G}} -\log \frac{\exp\left(\boldsymbol{z}^{l,a} \cdot \boldsymbol{z}^{l,+}/\tau\right)}{\exp\left(\boldsymbol{z}^{l,a} \cdot \boldsymbol{z}^{l,+}/\tau\right) + \sum_{\boldsymbol{z}^{l,-}} \exp\left(\boldsymbol{z}^{l,a} \cdot \boldsymbol{z}^{l,-}/\tau\right)}$$
(5)

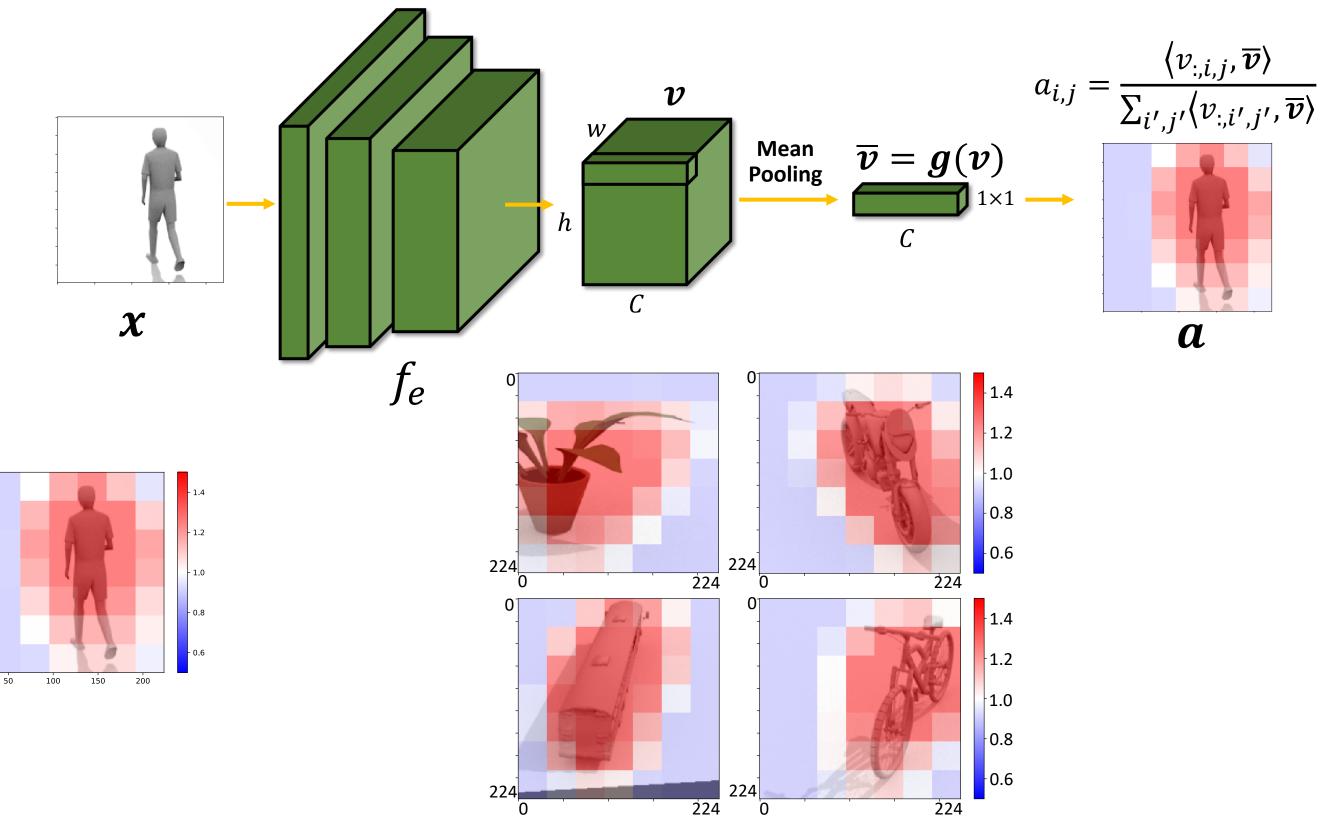
Dense InfoNCE (segmentation)

$$\mathcal{L}_{\text{NCE}} = \sum_{l \in \mathcal{G}} \sum_{i} \mathcal{L}_{\text{NCE}}^{l,i} = \sum_{l \in \mathcal{G}} \sum_{i} -\frac{1}{N_l} \log \frac{\exp\left(\boldsymbol{z}_i^{l,a} \cdot \boldsymbol{z}_i^{l,+}/\tau\right)}{\exp\left(\boldsymbol{z}_i^{l,a} \cdot \boldsymbol{z}_i^{l,+}/\tau\right) + \sum_{\boldsymbol{z}_i^{l,-}} \exp\left(\boldsymbol{z}_i^{l,a} \cdot \boldsymbol{z}_i^{l,-}/\tau\right)}$$
(6)

(3)

(4)

Attention-guided Global Pooling



25 -

50 -

75 -

100

125 -150 -

175 -200 -

0

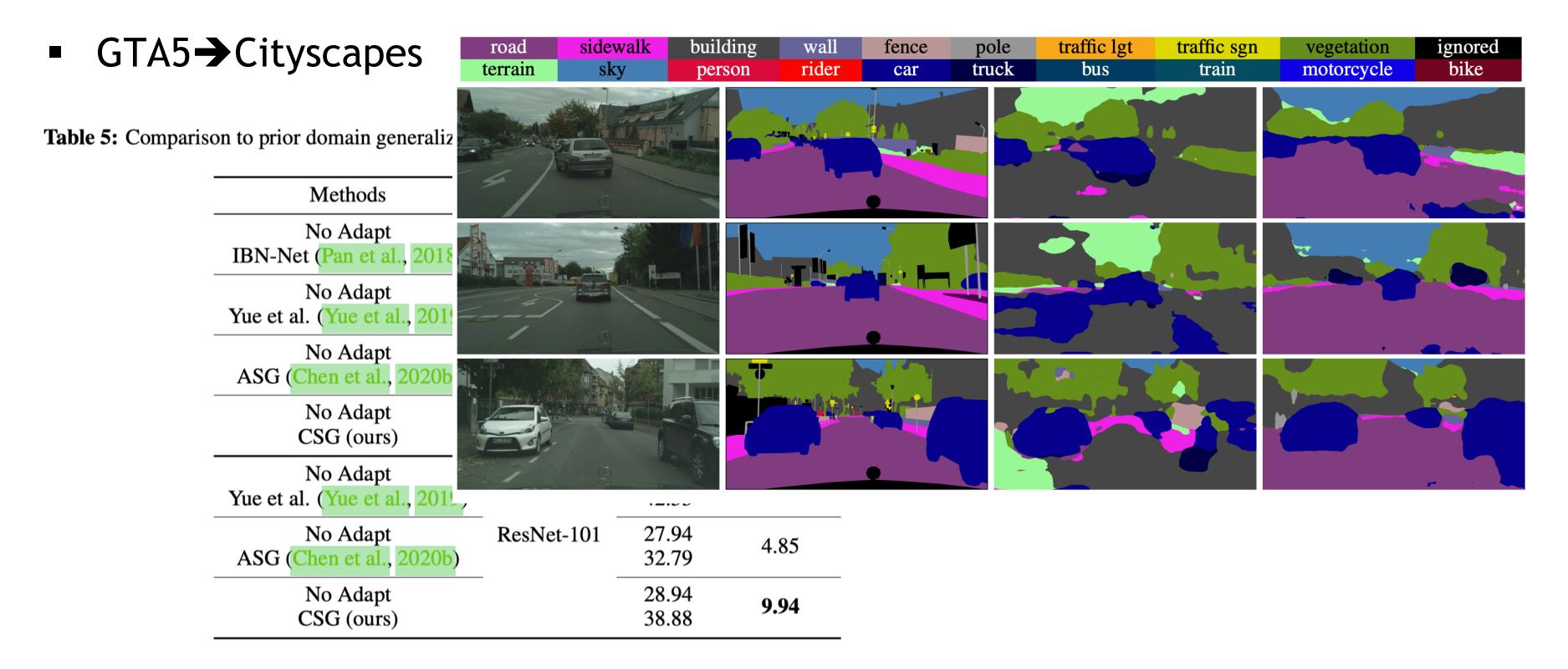
Results: Feature Diversity vs Generalization

Model preserves diverse features \rightarrow generalize better on real domain

Table 1: Generalization performance and hyperspherical energy of the features extracted by different models (lower is better). Dataset: VisDA-17 (Peng et al., 2017) validation set. Model: ResNet-101.

Model	Power			Accuracy (%)
	0	1	2	
Oracle on ImageNet ³	-	-	-	53.3
Baseline (vanilla synthetic training)	0.4245	1.2500	1.6028	49.3
Weight l2 distance (Kirkpatrick et al., 2017)	0.4014	1.2296	1.5302	56.4
Synaptic Intelligence (Zenke et al., 2017)	0.3958	1.2261	1.5216	57.6
Feature l^2 distance (Chen et al., 2018)	0.3337	1.1910	1.4449	57.1
ASG (Chen et al., 2020b)	0.3251	1.1840	1.4229	61.1
CSG (Ours)	0.3188	1.1806	1.4177	64.05

Results: Segmentation



Future Works

- More applications: Gaze, Detection, Robotics, etc.
- Joint training with domain adaptation.
- Better leveraging multiple sources
 - labeled real domain (ImageNet)
 - labeled synthetic domain
 - Unlabeled target real domain

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering